ATOMIC ENERGY EDUCATION SOCIETY

CLASS:X

 MATHEMATICS3.Pair Of Linear Equations In Two Variables(Module 4)
-S K Prasad
AECS 4 RBT

Algebraic Methods of Solving a Pair of Linear Equations(Elimination Method) \& some special cases

- In this type of solution we will follow the following steps
- Step 1 : First multiply both the equations by some suitable non-zero constants to make the coefficients of one variable (either x or y) numerically equal.
- Step 2 : Then add or subtract one equation from the other so that one variable gets eliminated. If you get an equation in one variable, go to Step 3.
- If in Sten 2. we obtain a true statement involvina
- Let us take word problem 1
- The ratio of incomes of two persons is $9: 7$ and the ratio of their expenditures is $4: 3$. If each of them manages to save Rs. 2000 per month, find their monthly incomes.
- Solution : Let us denote the incomes of the two person by Rs.9x and Rs.7x and their
- expenditures by Rs.4y and Rs.3y respectively. Then the equations formed in the situation
- is given by :
- $9 x-4 y=2000$
- $\operatorname{and} 7 x-3 y=2000$
- Let us take word problem 2
- Use elimination method to find all possible solutions of the following pair of linear equations
- $2 x+3 y=8$
- $4 x+6 y=7$
- Solution :
- Step 1 : Multiply Equation (1) by 2 and Equation (2) by 1 to make the coefficients of x equal. Then we get the equations as:
- $4 x+6 y=16$
- $4 x+6 y=7$
- Problem 3
- The sum of a two-digit number and the number obtained by reversing the digits is 66 . If the digits of the number differ by 2 , find the number. How many such numbers are there?
- Solution : Let the ten's and the unit's digits in the first number be x and y, respectively.
- So, the first number may be written as $10 x+y$ in the expanded form (for example, $56=10(5)+$ $6)$.
- When the digits are reversed, x becomes the unit's digit and y becomes the ten's digit. This number, in the expanded notation is $10 y+x$ (for

special case

- Solve for x \& y
- $47 x+31 y=63$
- $31 x+47 y=15$
- Note that the coefficient of $x \& y$ in one equationn are interchanged in the other.
- To solve such type of equation we will follow the following steps
- Step 1:Adding equation (1) \& (2) we get
- $78 x+78 y=78$
- Step 2:Dividing both sides by 78 to form a linear equation in simple form as given below
- $x+y=1$
- Step 3:Subtracting equation (2) from (1),we get $16 x-16 y=48$
- Step 4: Dividing both sides by 16 we get $x-y=3$
- Step 5:adding equation (3) \& (4) we get
- $x+y+x-y=1+3$ i.e. $2 x=4$ which implies that $x=2$
- Step 6:putting $x=2$ in equation (3)

Thank You

